## Section A



| $\begin{aligned} & \text { 4(i) } \overrightarrow{\mathrm{AB}}=\left(\begin{array}{l} 2 \\ 3 \\ -5 \end{array}\right), \overrightarrow{\mathrm{BC}}=\left(\begin{array}{l} 5 \\ 0 \\ 2 \end{array}\right) \\ & \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}}=\left(\begin{array}{l} 2 \\ 3 \\ -5 \end{array}\right) \cdot\left(\begin{array}{l} 5 \\ 0 \\ 2 \end{array}\right)=2 \times 5+3 \times 0+(-5) \times 2=0 \end{aligned}$ <br> $\Rightarrow \quad A B$ is perpendicular to $B C$. | B1 B1 <br> M1E1 <br> [4] |  |
| :---: | :---: | :---: |
| $\text { (ii) } \quad \begin{aligned} & \mathrm{AB}=\sqrt{ }\left(2^{2}+3^{2}+(-5)^{2}\right)=\sqrt{ } 38 \\ & \\ & \mathrm{BC}=\sqrt{ }\left(5^{2}+0^{2}+2^{2}\right)=\sqrt{ } 29 \\ & \\ & \text { Area }=1 / 2 \times \sqrt{ } 38 \times \sqrt{ } 29=1 / 2 \sqrt{ } 1102 \text { or } 16.6 \text { units }^{2} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$ | complete method <br> ft lengths of both $\mathrm{AB}, \mathrm{BC}$ oe www |
| $5 \begin{aligned} \text { LHS } & =\frac{2 \sin \theta \cos \theta}{1+2 \cos ^{2} \theta-1} \\ & =\frac{2 \sin \theta \cos \theta}{2 \cos ^{2} \theta} \\ & =\frac{\sin \theta}{\cos \theta}=\tan \theta=\text { RHS } \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { E1 } \\ & \text { [3] } \end{aligned}$ | one correct double angle formula used cancelling $\cos \theta$ 's |
| 6(i) $\quad\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}-8-3 \lambda \\ -2 \\ 6+\lambda\end{array}\right)$ <br> Substituting into plane equation: $\begin{aligned} & 2(-8-3 \lambda)-3(-2)+6+\lambda=11 \\ \Rightarrow & -16-6 \lambda+6+6+\lambda=11 \\ \Rightarrow \quad & 5 \lambda=-15, \lambda=-3 \end{aligned}$ <br> So point of intersection is $(1,-2,3)$ | B1 <br> M1 <br> A1 <br> A1ft <br> [4] |  |
| $\begin{aligned} & \text { (ii) Angle between }\left(\begin{array}{l} 2 \\ -3 \\ 1 \end{array}\right) \text { and }\left(\begin{array}{l} -3 \\ 0 \\ 1 \end{array}\right) \\ & \cos \theta=\frac{2 \times(-3)+(-3) \times 0+1 \times 1}{\sqrt{14} \sqrt{10}} \\ & \Rightarrow \quad \text { acute angle }=65^{\circ} \end{aligned}$ | B1 <br> M1 <br> A1 <br> A1 <br> [4] | allow M1 for a complete method only for any vectors |

## Section B

| 7(i) When $t=0, v=5\left(1-\mathrm{e}^{0}\right)=0$ <br> As $t \rightarrow \infty, \mathrm{e}^{-2 t} \rightarrow 0, \Rightarrow v \rightarrow 5$ <br> When $t=0.5, v=3.16 \mathrm{~m} \mathrm{~s}^{-1}$ | $\begin{aligned} & \text { E1 } \\ & \text { E1 } \\ & \text { B1 } \end{aligned}$ [3] |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { (ii) } \frac{\mathrm{d} v}{\mathrm{~d} t}=5 \times(-2) \mathrm{e}^{-2 t}=10 \mathrm{e}^{-2 t} \\ & \quad 10-2 v=10-10\left(1-\mathrm{e}^{-2 t}\right)=10 \mathrm{e}^{-2 t} \\ & \Rightarrow \quad \frac{\mathrm{~d} v}{\mathrm{~d} t}=10-2 v \end{aligned}$ | B1 <br> M1 <br> E1 <br> [3] |  |
| $\begin{array}{ll} \text { (iii) } \frac{\mathrm{d} v}{\mathrm{~d} t}=10-0.4 v^{2} \\ \Rightarrow \quad & \frac{10}{100-4 v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} t}=1 \\ \Rightarrow \quad & \frac{10}{25-v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} t}=4 \\ \Rightarrow \quad & \frac{10}{(5-v)(5+v)} \frac{\mathrm{d} v}{\mathrm{~d} t}=4^{*} \\ & \frac{10}{(5-v)(5+v)}=\frac{A}{5-v}+\frac{B}{5+v} \\ \Rightarrow \quad 10=A(5+v)+B(5-v) \\ v=5 \Rightarrow 10=10 A \Rightarrow A=1 \\ v=-5 \Rightarrow 10=10 B \Rightarrow B=1 \\ \Rightarrow \quad & \frac{10}{(5-v)(5+v)}=\frac{1}{5-v}+\frac{1}{5+v} \\ \Rightarrow \quad & \quad \int\left(\frac{1}{5-v}+\frac{1}{5+v}\right) \mathrm{d} v=4 \int \mathrm{~d} t \\ \Rightarrow \quad \ln (5+v)-\ln (5-v)=4 t+c \\ \text { when } t=0, v=0, \Rightarrow 0=4 \times 0+c \Rightarrow c=0 \\ \Rightarrow \quad \ln \left(\frac{5+v}{5-v}\right)=4 t \\ \Rightarrow \quad t=\frac{1}{4} \ln \left(\frac{5+v}{5-v}\right) * \end{array}$ | M1 <br> E1 <br> M1 <br> A1 <br> M1 <br> A1 <br> A1 <br> E1 <br> [8] | for both $A=1, B=1$ <br> separating variables correctly and indicating integration ft their $A, B$, condone absence of $c$ ft finding $c$ from an expression of correct form |
| (iv) When $t \rightarrow \infty, \mathrm{e}^{-4 t} \rightarrow 0, \Rightarrow v \rightarrow 5 / 1=5$ when $t=0.5, t=\frac{5\left(1-\mathrm{e}^{-2}\right)}{1+\mathrm{e}^{-2}}=3.8 \mathrm{~m} \mathrm{~s}^{-1}$ | $\begin{aligned} & \text { E1 } \\ & \text { M1A1 } \\ & \text { [3] } \end{aligned}$ |  |
| (v) The first model | $\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$ | www |


| 8(i) $\mathrm{AC}=5 \sec \alpha$ | B1 |  |
| :---: | :---: | :---: |
| $\begin{aligned} \Rightarrow & \mathrm{CF}=\mathrm{AC} \tan \beta \\ & =5 \sec \alpha \tan \beta \\ \Rightarrow & \mathrm{GF}=2 \mathrm{CF}=10 \sec \alpha \tan \beta^{*} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \text { [3] } \end{aligned}$ | ${ }^{A C t a n} \beta$ |
| (ii) $\begin{aligned} \mathrm{CE} & =\mathrm{BE}-\mathrm{BC} \\ & =5 \tan (\alpha+\beta)-5 \tan \alpha \\ & =5(\tan (\alpha+\beta)-\tan \alpha) \\ & =5\left(\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}-\tan \alpha\right) \\ & =5\left(\frac{\tan \alpha+\tan \beta-\tan \alpha+\tan ^{2} \alpha \tan \beta}{1-\tan \alpha \tan \beta}\right) \\ = & \frac{5\left(1+\tan ^{2} \alpha\right) \tan \beta}{1-\tan \alpha \tan \beta} \\ = & \frac{5 \tan \beta \sec ^{2} \alpha}{1-\tan \alpha \tan \beta} * \end{aligned}$ | $\begin{aligned} & \text { E1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { DM1 } \\ & \\ & \text { E1 } \\ & {[5]} \end{aligned}$ | compound angle formula <br> combining fractions $\sec ^{2}=1+\tan ^{2}$ |
| $\begin{aligned} & \text { (iii) } \sec ^{2} 45^{\circ}=2, \tan 45^{\circ}=1 \\ & \Rightarrow \quad \mathrm{CE} \end{aligned}=\frac{5 t \times 2}{1-t}=\frac{10 t}{1-t} .$ | B1 <br> M1 <br> A1 <br> M1 <br> E1 <br> [5] | used <br> substitution for both in CE or CD oe <br> for both <br> adding their CE and CD |
| $\begin{aligned} & \text { (iv) } \quad \cos 45^{\circ}=1 / \sqrt{ } 2 \Rightarrow \sec \alpha=\sqrt{2} \\ & \Rightarrow \quad \mathrm{GF}=10 \sqrt{2} \tan \beta=10 \sqrt{ } 2 t \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & {[2]} \end{aligned}$ |  |
| $\begin{array}{ll} \text { (v) } & \text { DE }=2 \mathrm{GF} \\ \Rightarrow & 20 t \\ 1-t^{2} & =20 \sqrt{2} t \\ \Rightarrow & 1-t^{2}=1 / \sqrt{ } 2 \Rightarrow t^{2}=1-1 / \sqrt{ } 2 * \\ \Rightarrow & t=0.541 \\ \Rightarrow & \beta=28.4^{\circ} \end{array}$ | $\begin{aligned} & \text { E1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$ | invtan t |


| Qn | Answer |  |  |  | Marks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1(i) | 6 correct marks |  |  |  | B1 |
| 1(ii) | Either state both m and n odd or give a diagram (doorways between rooms not necessary) justification |  |  |  | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1ft } \end{aligned}$ |
| 2(i) | $\frac{9-1}{4}=2=\left\lfloor\frac{4+1}{2}\right\rfloor$ |  |  |  | B2 <br> (B1 for LHS correct |
| 2(ii) | $x$ 1 <br> $\left\lceil\frac{x}{2}\right\rceil$ 1 | 2 l | 4 | 5 | B2,1,0 |
|  |  | 12 | 2 | 3 |  |
| 3. | If each of A, B and C appeared at least four times then the total number of vertices would have to be at least $3 \times 4=12$ |  |  |  | E2 |
| 4(i) |  |  |  |  |  |
|  |  |  |  |  | M1 <br> allow if one error |
| 4(ii) | Two points labelled B above clearly marked (or f.t. from (i)) |  |  |  | A1 |
| 5(i) | True. <br> Two cameras at the vertices labelled A or at the vertices labelled B would cover the entire gallery |  |  |  | A1 M1 for either |
| 5(ii) | False. <br> One camera at either vertex labelled A would be sufficient (or C on RHS) |  |  |  | $\begin{aligned} & \text { A1 } \\ & \text { M1 } \\ & \hline \end{aligned}$ |
| 6 | Anywhere in shaded region |  |  |  | M1 A1 |

